CERAMICS

Outline

- Basic properties
- Crystalline ceramics
- Glasses
- Carbon ceramics
- Mechanical failure of ceramics
- Creep resistance
- Ceramics fabrication

Recall:

- Ceramics are chemical compound or solutions that consist of both metallic and nonmetallic elements
- Bonding can range from ionic to covalent.

In general, ceramics:

- have a high melting point
- have low electrical and thermal conductivity
- have good chemical and thermal stability
- are hard
- have high compressive strengths
- are brittle
- are creep resistant

Crystalline ceramics

Structural difference from metals:

- ionic bond between two components
- components are considered ions (anions/cations)
- charge neutrality (<u>electroneutrality</u>) must be maintained
- electroneutrality is an added constraint on structural arrangement

Crystalline ceramics

 Crystal structures of ceramics are more complicated than metals.

corundum (Al₂O₃) spinel (Fe₃O₄) graphite

Crystalline ceramics

• Interstitial and substitutional solid solutions can form with impurities or between two ceramics.

Point defect structures in crystalline ceramics

Because <u>electroneutrality</u> must be maintained, point defects do not occur alone.

Deformation of crystalline ceramics

- Due to the requirement of electroneutrality, dislocation structures are complicated (if they exist at all) and are difficult to move.
- Result: ceramics are hard and brittle
- Recall the flex test \Rightarrow

Deformation of ceramic glasses (silicates)

Typical soda-lime glass: 70 wt.% SiO₂ bal Na₂O (soda) + CaO (lime)

- Glasses are amorphous.
- Bonding is covalent in nature
- No crystal structure therefore, no dislocations.
- Glasses deform by <u>viscous flow</u>, like a liquid ions slide past one another by the breaking and reforming of interatomic bonds
- Sodium is added as a <u>modifier</u> to reduce viscosity and make it possible to form glass at a lower temperature.

More about glasses

- Slow cooling is required to avoid thermal stresses or shock.
- Glasses can be strengthened by inducing compressive surface stresses.
- Process is called thermal tempering:
 - >glass is heated to just above T_g and cooled to RT by a jet of cool air
 - Surface becomes rigid before interior, interior wants to contract as it cools but can't, inducing compressive stresses on surface.

Mechanical failure of ceramics

- Ceramics are very brittle and <u>defect</u> sensitive. Failure is controlled by the presence of flaws.
- From a fracture mechanics standpoint, the critical flaw size for ceramics is very small.
- Manufacturing of brittle ceramics is driven by minimization of flaw size and quantity.
- The toughness of a ceramic is usually treated statistically.

Mechanical failure of ceramics

• Failure is often statistically described by a Weibull distribution.

$$\ln\left[\ln\left(\frac{1}{1-P}\right)\right] = m\ln(\sigma_f)$$

P=cumulative probability of failure m=Weibull modulus

Desirable: a narrow distribution (which results in a large value of m)

m = 10-20 is typical for an advanced ceramic

Creep resistance in ceramics

- Diffusivity is slow in ceramics so creep resistance is higher than in metals.
- Creep in ceramics usually occurs due to grain boundary sliding.
- Creep resistance is improved by:
 - > increasing grain size
 - > decreasing porosity
 - > decreasing impurities (which decreases viscous flow in glasses)

Comments on ceramic fabrication

• Ceramics cannot be fabricated by conventional metal forming techniques due to their mechanical and thermal properties.

Carbon ceramics

- •hardest material
- •low electrical conductivity
- •high thermal conductivity
- •high index of refraction

- •thermally and chemically stable
- •high thermal conductivity
- •low thermal expansion
- •high resistance to thermal shock
- excellent lubricity
- machinability

- •electrically insulating
- •can be made highly conductive with impurity additions